CHEMISTRY OF FURAZANO[3,4-*b*]PYRAZINES 3.* METHOD FOR THE SYNTHESIS OF 5,6-DISUBSTITUTED FURAZANO[3,4-*b*]PYRAZINES

I. B. Starchenkov and V. G. Andrianov

A method was developed for the synthesis of 5,6-dichlorofurazano[3,4-b]pyrazine (a compound with easily removed leaving groups). The optimum conditions for their substitution by various nucleophiles were determined.

The furazano[3,4-b]pyrazine heterocyclic system has attracted the attention of researchers in the field of the synthesis of energy-rich polynitrogen compounds. In spite of repeated attempts [2-8], a convenient method had not been found for the synthesis of derivatives of furazano[3,4-b]pyrazines until recently.

For the synthesis of derivatives of the type under consideration, it is necessary to have compounds containing reactive groups at positions 5 and 6. With this aim, we studied the substitution of the hydroxyl groups in 5,6-dihydroxyfurazano[3,4-b]pyrazine (I), synthesized from diaminofurazan and oxalic acid, by chlorine atoms. 5,6-Dichlorofurazano[3,4-b]pyrazine (II) was obtained with yields of 68-69% by the action of thionyl chloride or phosphorus oxychloride in the presence of catalytic amounts of DMFA and also during reaction with phosphorus pentachloride in phosphorus oxychloride.

The realization of nucleophilic substitution reactions for 5,6-dichlorofurazano[3,4-b]pyrazine (II) opens up broad possibilities, since the chlorine atoms in this compound are strongly activated and are easily substituted during the action of various nucleophiles [9]:

 $R^1 = NR, OR, SR; R^2 = NR', OR', SR', Cl, R^1$

The reaction of the dichloro derivative (II) with highly basic amines takes place quickly and under mild conditions (even if the amines are introduced in the form of aqueous solutions), whereas in 2,3-dichloro- and 2,3,5-trichloropyrazines ammonia only substitutes one of the chlorine atoms under severe conditions (15 h at 80°C) [10]. Such high reactivity is clearly explained

Latvian Institute of Organic Synthesis, Riga. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1402-1416, October, 1997. Original article submitted March 3, 1997.

^{*}For Communication 2, see [1].

TABLE 1	. Characteristics of the O	btained Compounds					
Compound	۲ <u>۲</u>	R ²	Molecular formula	mp, °C	PMR spectrum (DMSO-d ₆), ð. ppm	Basicity of initial amine, pK _a BH ⁺ (H ₂ O) [12]	Yield, % (method)
-	2	3	4	S	6	7	80
Π	ō	5	C4Cl2N4O	170175 (subl.)	ļ	ļ	69
111	ū	-	C4CIIN4O	130131	ļ	ļ	75 (E)
1	G	NH ₂	C ₄ H ₂ CIN ₅ O	175177 (;decomp.)	8,22 (1H, s, NH); 8,78 (1H, s, NH)	9,3	58 (D)
>	NH2	NH ₂	C₄H₄N ₆ O	320 (decomp.)	7,96 (4H, S, NH ₂)	9,3	97 (D)
Ν	HOHN	НОНИ	C ₄ H ₄ N ₆ O ₃	320 (decomp.)	10,93 (4H, s, NHOH)	6,0	92 (D)
ΝI	HOHN	OC ₅ H ₅	C ₆ H ₇ N ₅ O ₃	270276	1,42 (3H, ¹ , CH ₃); 4,51 (2H, q, CH ₂); 11,40 (2H, d, NHOH)	6,0	51 (D)
IIIA	NHCH ₃	NHCH ₃	C ₆ H ₈ N ₆ O	260262	2,93 (6H, s, CH ₃); 8,15 (2H, s, NH)	9'01	85 (D)
XI	NH2	NHCH ₃	C ₅ H ₆ N ₆ O	210212 (decomp.)	2,93 (3H, s, CH ₃); 7,89 (2H, ^s , NH ₂); 8,25 (1H, s, NH)	9,3	26 (D)
×	NHC ₂ H ₅	NHC ₂ H ₅	C ₈ H ₁₂ N ₆ O	234235	1,26 (6H, t, CH ₃); 3,243,53 (4H, m, CH ₂); 8,13 (2H, t, NH)	10,7	88 (D)
ĨX	N(CH ₃) ₂	N(CH ₃) ₂	C ₈ H ₁₂ N ₆ O	164165	3,02 (12H, s, CH ₃)	10,7	80 (D)

ø	8 (D)	(D)	(D)	4 (A)	2 (A)	2 (D)	(D)	(¥)	(<u>(</u>)	ê	(V) 1
7	10,6	10,7 8	10,9 8	9,5	7,9 6.	9,5	9'S	4,6 7	8,2 9!	7,5 7.	6,5 71
9	0,86 (6H, t, CH ₃); 1,381,80 (4H, m, CH ₂); 3,183,47 (4H, m, CH ₂); 8,1 (2H, t, NH)	1,37 (18H, S, CH ₃); 7,61 (2H, S, NH)	0.87 (12H, t, CH3); 0.781,64 (1,6H, m,CH2CH2); 3,56 (8H, t, CH2)	4,14 (4H, ^t , CH ₂); 5,105,40 (4H, m, CH ₂); 5,716,15 (2H, m, CH); 8,39 (2H, ^t , NH)	3,27 (2H, t, CH); 4,24 (4H, t, CH ₂); 8,62 (2H, d, NH)	3,403,71 (8H, m, CH2); 4,84 (2H, t, OH); 8,36 (2H, t, NH)	1,11 (6H, d. CH3); 3,133,58 (4H, m, CH2); 3,784,09 (2H, m, CH); 4,82 (2H, d, OH); 8,35 (2H, t, NH)	3,82 (6H, s, CH ₃); 11,17 (2H, s, NH)	6,95 (6H, S, NHNH2)	2,64 (12H, s, CH ₃); 8,27 (2H, s, NH)	3,484,00 (4H, m, CH ₂ CH ₂);
S	144145	269270	7375	122123	221223	227229	173175	280290	260262	254256	258260
4	C ₁₀ H ₁₆ N ₆ O	C ₁₂ H ₂₀ N ₆ O	C ₂₀ H ₃₆ N ₆ O	C ₁₀ H ₁₂ N ₆ O	C ₁₀ H ₈ N ₆ O	C ₈ H ₁₂ N ₆ O ₃	C ₁₀ H ₁₆ N ₆ O ₃	C ₆ H ₈ N ₆ O ₃	C4H6N8O	C ₈ H ₁₄ N ₈ O	C ₆ H ₅ BrClO
3	NHC ₃ H ₇	NHC(CH ₃) ₃	N (C4H5) 2	NHCH ₂ CH-CH ₂	NHCH ₂ C ≡ CH	NHCH ₂ CH ₂ OH	NHCH ₂ CH(OH)CH ₃	NHOCH ₃	NHNH ₂	NHN(CH ₃) ₂	NHCH ₂ CH ₂ Br
2	NHC ₃ H ₇	NHC(CH ₃) ₃	N(C4H9) ₂	NHCH ₂ CH-CH ₂	$NHCH_2C = CH$	NHCH ₂ CH ₂ OH	NHCH ₂ CH(OH)CH ₃	NHOCH ₃	NHNH ₂	NHN(CH ₃) ₂	ū
1	ХІІ	XIII	XIX	۸x	ТУХ	ПУХ	ШЛХ	XIX	ХХ	ХХІ	XXII

.

-	2	3	4	S	Q	7	8
IIIXX	NHCH ₂ CH ₂ Br	NHCH ₂ CH ₂ Br	C ₈ H ₁₀ Br ₂ N ₆ O	>250	3,553,93 (4H,m, CH2); 4,064,33(4H,m, CH2); 7,11 and 9,00 (2H, S, S NH)	6,5	42 (A)
XXIV	NHCH ₂ CH ₂ OCH(CH ₃) ₂ . 2HBr	NHCH ₂ CH ₂ OCH(CH ₃) ₂ · 2HBr 2HBr	C ₁₄ H ₂₆ Br ₂ N ₆ O ₃	>250	2,933,24 (6H, d CH3); 3,643,89 (4H, m, CH2); 4,044,33 (4H, m, CH2); 5,71 (2H, s, CH); 8,31 and8,48 (2H, s, s, NH)	!	41 (C)
ХХУ	NHCH ₂ CN	NHCH ₂ CN	C ₈ H ₆ N ₈ O	>220 (decomp.)	4,55 (4H, s, CH ₂); 8,82 (2H, s, NH)	5,4	42 (B)
ххи	NHCH ₂ CO ₂ Bn	NHCH ₂ CO ₂ Bn	C22H20N6O5	160163	4,20 (4H, s, CH2); 5,13 (4H, s, CH2); 6,73 (2H, s, NH); 7,33 (10H, s, C6H5)	7,1	57 (A)
илхх	NHNHCO ₂ C ₂ H ₅	NHNHCO2C ₂ H ₅	C ₁₀ H ₁₄ N ₈ O ₅	205207	1,15 (6H, t. CH ₃); 3,884,24 (4H, q, CH ₂); 9,49 (2H, s, NH)	3,1	84 (D)
ШЛХХ	NHCH ₂ C(0)C ₆ H ₅ · H ₂ O	NHCH ₂ C(0)C ₆ H ₅ · H ₂ O	C ₂₀ H ₁₈ N ₆ O ₄	237239	5,11 (4H, S, CH2); 7,498,13 (10H, m, C6H5); 8,89 (2H, s, NH)	ļ	28 (A)
хіхх	ō	NHOBn	C ₁₁ H ₈ CIN ₅ O ₂	154155	5,22 (2H, s, CH ₂); 7,277,51 (5H,m, C ₆ H ₅); 11,97 (1H, s, NH)	ļ	66 (A)
xxx	N_CO2CH3	NHOBn	C ₁₅ H ₁₄ N ₆ O ₄	153154	2,71 (2H, m, CH2); 3,40 (1H, q, CH); 3,62 (3H, s, CH3); 5,13 (2H, s, CH2); 5,13 (2H, s, CH2); 11,60 (1H, s, NH)	1	97 (A)
IXXX	ON-CHC ₆ H ₄ NO ₂ - <i>p</i>	ON−CHC ₆ H₄NO ₂ - <i>P</i>	C ₁₈ H ₁₀ N ₈ O ₇	9395	8,068,51 (8H, q, C6H4); 9,29 (2H, s, CH)	ļ	28 (B)

1	2	3	45	6	1	. 8	6
шххх	осн ₃ ос2 ₄₅	0CH ₃ 0C ₂ H ₅	C ₆ H ₆ N ₄ O ₃ C ₈ H ₁₀ N ₄ O ₃	176177 166168	4,05 (6H, s, CH ₃) 1,51 (3H, t, CH ₃);	-2,1 -2,3	49 (E) 85 (E)
ΧΧΧΙΛ	OC ₆ H ₄ NO ₂ - <i>p</i>	0C ₆ H ₄ NO ₂ - <i>p</i>	C ₁₆ H ₈ N ₆ O ₇	>250	4,67 (2H, q, CH2) 7,69 (4H, d, C6H4);	-6,5	94 (E)
XXXV	SH	SH SH	C ₄ H ₂ N ₄ OS ₂	>250	6,44 (46, 4, 664) 3,77 (2H, 5, SH)	7,1	73 (E)
	scetts	SCeHs N	C ₁₂ H ₁₆ N ₆ OS ₂ C ₁₂ H ₁₆ N ₆ O	217219 119122	7,517,80 (10H, m, CaHs) 3,473,71 (8H, m, CH ₂); 1,751,98 (8H, m, CH ₂)	6,5 11,8	69 (D)
ХХХУШ	, Ç	Q	C ₁₄ H ₂₀ N ₆ O	162163	1,56 (12H, s, CH ₂); 3,57 (8H, s, CH ₂)	11,2	68 (D)
хіххх	°	(°)	C ₁₂ H ₁₆ N ₆ O ₃	224225	3,64 (16H, s, CH ₂)	8,7	75 (D)
XL	NCH ³	N NCH ₃	C ₁₄ H ₂₂ N ₈ O	225226	2,12 (6H, ^{S,} CH ₃); 2,38 (8H, m, CH ₂); 3,58 (8H, m, CH ₂)	9,3	8 2 (D)
XLI	z, z	2 N	C ₁₀ H ₆ N ₈ O	237240	7,13 (2H, S, CH); 8,04 (2H, S, CH); 8,82 (2H, S, CH)	7,1	58 (A)
ХЫЛ	H ₃ C ^{N-N} CH ₃	H ₃ C CH ₃	C ₁₄ H ₁₄ N ₈ O	137138	1,98 (6H, s, CH ₃); 2,49 (6H, s, CH ₃); 6,18 (2H, s, CH)	4,3	72 (A)

1	2	3	4	5	6	1	8
ШЛХ	HOOC	HOOC	C12H12N6O5S2	225227	2,803,69 (4H, m, CH ₂); 4,02 (2H, m, CH); 4,375,24 (4H, m, CH ₂)	6,2	82 (E)
XLIV			C ₈ H ₄ N ₁₀ O	210212	8,38 (2H, s, CH); 9,55 (2H, s, CH)	2,2	61 (B)
XLV	○ _{NH}	NH	C ₁₆ H ₂₄ N ₆ O	180183	1,002,24 (20H, m, CH2); 3,58 (2H, s, CH); 7,93 (2H, s, NH)	10,8	84 (D)
XTVI	NH	NH NH	C ₁₄ H ₁₀ N ₈ O	235237	6,44…8,40 (8Н, m,C5H4N); 8,40 (2Н, s, NH)	6,7	13 (D)
лли	ū	N-N S ()	C ₇ H ₃ CIN ₆ OS ₂	153155	2,86 (3H, s, CH ₃)	!	48 (C)
ШЛТХ	ō	,	C ₁₀ H4CIN7O	205207	7,678,12 (4H, m, C6H4)	1,6	41 (C)
ХГІХ	(°)	z 7 jz	C ₁₄ H ₁₂ N ₈ O ₂	210212	3,33 (4H, m, CH2); 3,60 (4H, m, CH2); 7,447,89 (2H, m, C6H2); 8,048,35 (2H, m, C6H2);	8,7	74 (D)

	Yield, %	(me-	(חחחוו	12	72 (D)	75 (A)	72 (A)	82 (A)	(Y) 19	64 (A)	79 (B)
	Basicity of initial amine,	pK_BH ⁺ (H_0)	[12]	11	4,5	4,4	4,7	5,1	4,7	4,7	5,1
	PMR spectrum (DMSO-d ₆),	ó, ppm		10	7,047,80(10H, m, C6H5); 9,93(2H, s, NH)	2,24 (6H, S, CH3); 7,117,51 (8H, m, C6H4); 9,67 (2H, s, NH)	2,36 (6H, s, CH3); 7,007,67 (8H, m, C6H4); 9,87 (2H, s, NH)	2,33 (6H, S, CH3); 7,207,73 (8H, m, C6H4); 9,87 (2H, s, NH)	3,15 (6H, ^S , CH ₃); 6,477.09 (18H,m ,C ₆ H ₅)	2,13 (6H, s, CH3); 2,35 (6H, s, CH3); 7,047,33 (6H, m, C ₆ H3); 9,69 (2H, s, NH)	2,15 (6H, \$, CH ₃); 2,33 (6H, \$, CH ₃); 7,22 and 7,58 (6H, d,d, C ₆ H ₃); 9,84 (2H, \$, NH)
	mp, °C			6	114115	228229	205206	203204	200201	195196	230232
	Molecular	IOIIMUIA		80	C ₁₆ H ₁₂ N ₆ O	C ₁₈ H ₁₆ N ₆ O	C ₁₈ H ₁₆ N ₆ O	C ₁₈ H ₁₆ N ₆ O	C ₁₈ H ₁₆ N ₆ O	C ₂₀ H ₂₀ N ₆ O	C ₂₀ H ₂₀ N ₆ O
			RS	7	Н	2-CH ₃	3-CH ₃	4-CH ₃	Н	3-CH ₃	4-CH ₃
	.R⁴ .R⁵	R ²	R ⁴	9	Н	H	н	н	Н	2-CH ₃	3-CH ₃
	Ŷ	}	R ³	2	Н	н	н	н	СН3	H	н
	$R^{1}, R^{2} = \frac{R^{3}}{2}$		R ⁵	4	Н	2-CH ₃	3-CH ₃	4-CH ₃	Н	3-CH ₃	4-CH ₃
		R ¹	R4	8	Н	H	Н	Н	н	2-CH ₃	3-CH ₃
ļ			R ³	2	н	н	Н	н	СН3	H	¥
	Compound			1	-1	L	LII	L LIII	١IJ	LV	IVI

TABLE 2. Characteristics of the Aniline Derivatives of 5,6-Furazano[3,4-b]pyrazines (L-CXIV)

TABLE 2	(contin	led)							 		
-		2		~	9	7	80	6	01	=	12
ΠΛΠ	 	R ¹ -	σ	H	2-CH ₃	6-CH ₃	C ₁₂ H ₁₀ CIN ₅ O	203204	2,07 (6H, S; CH ₃); 7,11 (3H, S, C ₆ H ₃); 9,95 (1H, s, NH)	3,9	53 (D)
ГЛШ	н	2-CH ₃	6-CH ₃	н	2-CH ₃	6-CH ₃	C ₂₀ H ₂₀ N ₆ O	261262	2,22 (12H, s, CH ₃); 7,22 (6H, s, C ₆ H ₃); 9,56 (2H, s, NH)	3,9	28 (D)
רוא	н	H	3-0CH ₃	н	Н	3-0CH ₃	C ₁₈ H ₁₆ N ₆ O ₃	203204	3.78 (6H, s, CH3); 6.877,44 (8H, m, C6H4); 9,91 (2H, s, NH)	4,2	74 (B)
LX	H	н	4-0CH ₃	н	H	4-0CH ₃	C ₁₈ H ₁₆ N ₆ O ₃	215216	3,80 (6H, S, CH3); 7,04 (4H, d, C6H4); 7,73 (4H, d, C6H4); 9,84 (2H, S, NH)	5,3	38 (B)
ГХІ	H	н	2-CI	н	H	2-CI	C ₁₆ H ₁₀ Cl ₂ N ₆ O	230232	7,267,64 (8H, m,C6H4); 10, 18 and 2, 13 (2H, s, s, NH)	2,6	92 (B)
IIXII	Н	Н	3-CI	н	Н	3-CI	C ₁₆ H ₁₀ Cl ₂ N ₆ O	234235	7,227,98 (8H, m, C6H4); 10,04 (2H, s, NH)	3,5	81 (B)
ПХШ	н	Н	4-CI	H	H	4-CI	C ₁₆ H ₁₀ Cl ₂ N ₆ O	237238	7,53 and 7,87 (8H, d,d, C ₆ H ₄); 10,00 (2H, s, NH)	4,0	96 (B)
LXIV		R ¹	ū	H	Н	4-CI	C ₁₀ H ₅ Cl ₂ N ₅ O	198199	7,448,18 (4H, m, C6H4); 10,18 and 10,33 (1H, s, s, NH)	4,0	71 (D)
LXV		R ¹ – NF	ICH ₃	Ξ	H	-4-C	C ₁₁ H ₉ ClN ₆ O	231232	3,02 (3H, s, CH3); 7,42 (2H, d, C6H4); 7,80 (2H, d, C6H4); 7,80 (2H, s, NH); 9,65 (1H, s, NH);	10,6	91 (D)
ГХЛІ		R ¹ = NF	НОГ	I	I	-4 C	C ₁₀ H7CIN ₆ O ₂	253255	7.33 (2H, d, C ₆ H ₄); 7,78 (2H, d, C ₆ H ₄); 9,33 (1H, s, NH); 11,13 (1H, s, OH); 11,26 (1H, s, NH)	6,0	83 (D)

	78 (D)	38 (A)	32 (A)	71 (B)	57 (B)	73 (B)	82 (B)	88 (B)	75 (B)	64 (B)	92 (B)
11	8,7	6,7	ļ	2,5	3,5	3,8	3,9	3,8	2,5	3,0	5,0
10	3,583,84 (8H, m, CH2); 7,49 (2H, d, C6H4); 7,84 (2H, d, C6H4); 9,64 (1H, s, NH)	6,406,60 (ZH, m, CsH4N); 7,277,51 (ZH, m, CsH4N); 7,678,13 (4H, m, CsH4); 8,15 and 8,37 (1H, s, s, NH); 8,75 and 8,93 (1H, s, s, NH)	2,85 (3H, s, CH3); 7,528,15 (4H, m, G6H4); 8,90 and 9,04 (1H, s,s, NH); 9,71 (1H, d, NH)	7,177,80 (8H, m, C ₆ H ₄); 10,15 and 12,10 (2H, S,S, NH)	7,338,22 (8H, m, C ₆ H4); 10,02 (2H, S, NH)	7,608,11 (8H, m, C ₆ H ₄); 10,00 (2H, S, NH)	3,20 (6H, S, CH3); 6,64 (4H, d, C6H4); 7,24 (4H, d, C6H4)	7,73 (8H, m, C ₆ H ₄); 9,96 (2H, s, NH)	7,138,00 (4H, m, C ₆ H ₄); 10,22 (1H, s, NH)	7,137,71 (8H, m, C ₆ H ₄); 9,93 (2H, s, NH)	6,937,98 (8H, m, C6H4); 10,11 (2H, s, NH)
6	204205	>250	>250	250251	234235	252253	272274 (decomp.)	256258	186187	204205	240241
8	C ₁₄ H ₁₃ CIN ₆ O ₂	C ₁₅ H ₁₀ CIN7O	C ₁₃ H ₉ CIN ₈ OS	C ₁₆ H ₁₀ Br ₂ N ₆ O	C ₁₆ H ₁₀ Br ₂ N ₆ O	C ₁₆ H ₁₀ Br ₂ N ₆ O	C ₁₈ H ₁₄ Cl ₂ N ₆ O	C ₁₆ H ₁₀ I ₂ N ₆ O	C ₁₀ H ₅ CIIN ₅ O	C ₁₆ H ₁₀ F ₂ N ₆ O	C ₁₆ H ₁₀ F ₂ N ₆ O
1	4-CI	4-CI	5	2-Br	3-Br	4-Br	4-CI	4-I	2-I	2-F	а.ғ
9	Н	H	H	Н	H	Н	н	Н	Н	Н	Н
S	н	H	н	н	Н	Н	CH ₃	Н	Н	Н	н
	(°)		-N CH ³	2-Br	3-Br	4-Br	4-CI	4-I	. ರ	2-F	д Е
2	R ¹ = N.	R ¹ = HN·	R ¹ = HN	н	н	H	н	Н	R ¹	H	H
				Н	н	н	CH ₃	Н		Н	н
1	ПХЛІ	ТХЛІІ	TXIX	ГХХ	ГХХІ	ПХХП	ПХХІІ	TXXIV	ТХХЛ	ТХХЛ	ГХХИ

1 12	5 70 (B)	6 75 (B)	0 80 (B)	2 67 (C)	5 90 (B)	0 78 (C)	3 67 (B)	4 85 (C)	5 61 (B)	7 65 (B)	9 81 (B)) 59 (C)
	4			°	·5		2,	• 	5,	• •	1.)' [-
10	7,227,80 (8H, m,C6H4); 9.98 (2H, s. NH)	2,00 (6H, S, CH3); 7,187,67 (6H, m, C ₆ H3); 9,62 (2H, S, NH)	7,768,18 (6H, m, C ₆ H ₃); 10,18 (2H, s, NH)	7,368,27 (8H, m, C ₆ H ₄); 11,62 (2H, s, NH)	7,558,31 (8H, m, C6H4); 10,29 (2H, s, NH)	7,828,44 (8H, m, C6H4); 10,44 (2H, s, NH)	2,60 (6H, S, CH ₃); 7,628,02 (6H,m, C ₆ H ₃); 10,04 (2H, s, NH)	2,48 (6H, ^S , CH ₃); 7,558,04 (6H, ^m , C ₆ H ₃); 11,47 (2H, s, NH)	4,11 (6H, S, CH ₃); 7,898,89 (6H, m, C ₆ H ₃); 9,56 (2H, S, NH)	3,91 (6H, s, CH ₃); 7,387,80 (6H, ^m , C ₆ H ₃); 11,22 and 12,18 (2H, s, s, NH	7,738,24 (6H, m, C ₆ H ₃); 10,44 (2H, S, NH)	8,288,82 (6H,m, C ₆ H ₃);
6	269270	>300	274276	223224	267269	342343	274275	>260	190192	>260	>250	>250
∞	C ₁₆ H ₁₀ F ₂ N ₆ O	C ₁₈ H ₁₄ I ₂ N ₆ O	C ₁₆ H ₈ Cl ₄ N ₆ O	C ₁₆ H ₁₀ N ₈ O ₅	C ₁₆ H ₁₀ N ₈ O ₅	C ₁₆ H ₁₀ N ₈ O ₅	C ₁₈ H ₁₄ N ₈ O ₅	C18H ₁₄ N ₈ O ₅	C ₁₈ H ₁₄ N ₈ O ₇	C ₁₈ H ₁₄ N ₈ O ₇	C ₁₆ H ₈ Cl ₂ N ₈ O ₅	C ₁₆ H ₈ Br ₂ N ₈ O ₅
2	4-F	4-I	4-CI	2-NO ₂	3-NO ₂	4-NO2	5-NO2	4-CH ₃	4-NO2	4-0CH ₃	4-CI	4-NO ₂
6	H	2-CH ₃	3-CI	Н	Н	н	2-CH3	2-NO2	2-0CH ₃	2-NO ₂	3-NO ₂	2-Br
s	н	Н	Н	H	н	н	Н	н	н	Н	н	Н
4	4-F	4-I	4-CI	2-NO ₂	3-NO ₂	4-NO ₂	5-NO ₂	4-CH ₃	4-NO2	4-0CH3	4-CI	4-NO ₂
e	Н	2-CH ₃	3-CI	Н	Н	Н	2-CH ₃	2-NO2	2-0CH ₃	2-NO ₂	3-NO ₂	2-Br
2	Н	Н	Н	Н	Н	Н	н	H	н	Н	Н	Н
	ΓΧΧΛΙΙΙ	LXXIX	LXXX	ГХХХІ	ПХХХП	TXXXIII	TXXXIV	ГХХХЛ	ΓΧΧΧΛΙ	плхххл	ΓΧΧΧΛΙΙΙ	TXXXIX

12	72 (A)	76 (B)	56 (B)	76 (B)	67 (B)	72 (B)	68 (B)	81 (B)	77 (B)	68 (B)
11	5,5	ļ	ļ	3,3	4,0	3,1	3,6	2,2	2,4	3,3
10	6,677,62.(8H, m, C6H4); 9,42 (1H, s, OH); 9,69 (1H, s, NH)	4,58 (4H, s, CH2); 5,29 (2H, s, OH); 7,127,82 (8H, m, CdH4); 9,96 (2H, s, NH)	4,84 (4H, s, CH2); 7,227,93 (8H, m, C6H4); 10,00 (2H ^s , NH)	7,358,04 (8H, m, C ₆ H4); 7,938,04 (4H, NH2); 10,09 (2H, S, NH)	7,538,22 (8H, m, C ₆ H4); 10,22 (2H, S, NH)	7,498,44 (8H, m, C ₆ H ₄); 9,95 (2H, s, NH)	1,36 (6H, t, CH3); 4,36 (4H, 9, CH3); 7,518,40 (8H,m, CaH4); 10,11 (2H, s, NH)	3,88 (6H, S, CH3); 7,159,00 (8H,m, C6H4); 12,00 (2H, S, NH)	3,80 (6H, S, CH3); 8,07 (8H, S, C6H4); 10,51 (2H, s, NH)	2,07 (6H, ⁵ , CH ₃); 7,297,93 (8H, m, C ₆ H ₄); 9,29, and 9,64 (2H, s, s, NH); 11,80 (2H, s, NH)
6	>250	225227	178180	>250	242243	>260	238240	>300	293294	280 (decomp.)
8	C ₁₆ H ₁₂ N ₆ O ₃	C ₁₈ H ₁₆ N ₆ O ₃	C ₁₈ H ₁₄ Cl ₂ N ₆ O	C ₁₈ H ₁₄ N ₈ O ₃	C ₁₈ H ₁₀ F ₆ N ₆ O	C ₁₈ H ₁₂ N ₆ O ₅	C22H20N6O5	C ₂₀ H ₁₆ N ₆ O ₅	C ₂₀ H ₁₆ N ₆ O ₅	C ₂₀ H ₁₈ N ₆ O ₃
2	4-0H	3-СН ₂ ОН	3-CH ₂ CI	3-CONH ₂	3-CF ₃	3-C0 ₂ H	3-C0 ₂ C ₂ H ₅	2-C02CH3	4-C02CH ₃	2-NHCOCH ₃
v	Н	H	н	Н	Н	Н	н	Н	н	H .
S	Н	H	Н	Н	Н	Н	н	Н	н	H
4	4-0H	3-CH ₂ OH	3-CH ₂ CI	3-CONH ₂	3-CF ₃	3-CO ₂ H	3-C0 ₂ C ₂ H ₅	2-C02CH3	4-CO ₂ CH ₃	2-NHCOCH ₃
	н	н	н	Н	H	Н	H	H	H	H
2	Н	H	н	н	H	Н	н	н	н	я
-	xc	xci	XCII	xcili	XCIV	XCV	хси	XCVII	XCVIII	XCIX

12	91 (B)	61 (B)	63 (B)	82 (B)	61 (B)	75 (D)	81 (E)	75 (D)	68 (A)
п	3,7	2,1	1,9	5,3	2,2	İ	ļ	8,7	5,6
10	2,07 (6H, s, CH ₃); 7,337,60 (8H, m, C ₆ H ₄); 8,06 (2H, s, NH); 10,20 (2H, s, NH)	3,35 (4H, s, NH2); 7,808,13 (8H, m, C6H4); 10,24 (2H, s, NH)	6.888,13 (6H,m, C ₆ H3); 8,45 and 8,63 (each1H, s, s, OH); 10,27 (2H, s, NH)	2,07 (6H, s, CH ₃); 5,00 (4H, s, NH ₂); 6,777,09 (6H, m, C ₆ H ₃); 9,60 (2H, s, NH)	3,93 (3H, \$, CH3); 7,209,07 (4H, m, CA4); 10,90 and 12,18 (each1H, \$, \$, NH)	7,53 (2H, d, CeH4); 7,95 (2H, d, CeH4); 9,84 (1H, s, NH)	7,93 (2H, d, C6H4); 8,29 (2H, d, C6H4); 12,16 (1H, s, NH)	3,71 (8H, s. CH2); 7,82 (2H, d. C6H4); 8,04 (2H, d. C6H4); 9,87 (1H, s. NH)	1,20 (3H, 1, CH ₃); 4,09 (2H, q, CH ₂); 7,44 (5H, s, C6H5)
6	>300 (decomp.)	>310 (decomp.)	>250	>250	198199	247249	>300	128130	107108
8	C20H18N8O3	C ₁₆ H ₁₄ N ₈ O ₅ S ₂	C ₁₈ H ₁₂ N ₆ O ₇	C ₁₈ H ₁₈ N ₈ O	C ₁₂ H ₈ CiN ₅ O ₃	C ₁₁ H ₅ CIN ₆ O	C ₁₁ H ₅ N ₉ O	C ₁₅ H ₁₃ N ₇ O ₂	C ₁₂ H ₁₀ CIN ₅ O
7	3-NHCOCH ₃	4-SO ₂ NH ₂	4-C0 ₂ H	5-NH ₂	2-CO ₂ CH ₃	4-CN	4-CN	4-CN	Н
9	Н	н	3-ОН	2-CH ₃	н	Н	Н	H	н
S	Н	Н	н	Н	H	Н	Н	н	C ₂ H ₅
4	3-NHCOCH ₃	4-SO ₂ NH ₂	4-C0 ₂ H	5-NH ₂	.0	8	e z	(°)	5
3	н	Н	3-ОН	2-CH ₃	R ¹	R ¹ = (R ¹ - J	R ¹ = N	R ¹ - (
2	н	H	н	н					
-	υ	ū	CII	CIII	CIV	CV	СИ	СИІ	СУШ

12	92 (E)	72 (D)	68 (C)	77 (D)	41 (A)	72 (E).
T	ļ	5,4	2,5	5,1	ļ	6,2
01	1,31 (3H, ·t, CH3); 4,27 (2H, q, CH2); 7,337,60 (5H, m, CH2)	0,82 (3H, t, CH3); 1,27 (6H, m, CH2); 1,65 (2H, m, CH2); 1,66 (2H, m, CH2); 7 35 (3KH m CAH3)	0,84 (3H, t, CH3); 0,84 (3H, t, CH3); 1,31 (6H, m, CH2); 1,67 (2H, m, CH2); 4,02 (2H, t, CH2); 7,29795 (9H, m, GeH4);	8,42 and 8,84 (1H, S, S, NH) 5,36 (2H, S, CH ₂); 7 20 7 40 (10H m.C ₅ H ₅)	1,13 (3H, t, CH ₃); 5,28 (2H, s, CH ₂); 6,51 (1H, s, NH); 6,50	0,0007,77 (1214,1,17) (1214,17) 4,06 (2H, s, CH2); 5,18 (1H, s, CH2); 5,26 (2H, s, CH2); 7,027,67 (4H, m, C6H4); 9,84 (1H, s, NH)
0	121123	3032	127128	107108	176178	232235
8	C ₁₂ H ₁₀ N ₈ O	C ₁₆ H ₁₈ CIN ₅ O	C ₂₂ H ₂₃ N ₇ O ₃	C ₁₇ H ₁₂ CIN ₅ O	C ₂₁ H ₁₈ N ₈ OS	C ₁₄ H ₁₁ N ₇ O ₅ S
7	н	н	H	Н	Н	4-NO ₂
6	н	Н	Н	Н	H	H
5	C ₂ H ₅	C ₆ H ₁₃	C ₆ H ₁₃	Bn	Bn	
2	R ¹ – N ₃	н н 3-NO ₂	Н Н 3-NO2	R ¹ = CI	$R^{1} = $ N^{-N} N^{-N}_{S} $C_{2}H_{5}$	$R^{1} = \frac{H00C}{N s}$
1	CIX	cx	CXI	СХІІ	CXIII	CXIV

by the effect of the strong electron-withdrawing furazan ring, leading to strong polarization of the C-Cl bond. For this reason, the dichloro derivative (II) is more reactive in nucleophilic substitution reactions than its sulfur-containing analog -5,6-dichloro-1,2,5-thiadiazolo[3,4-b]pyrazine [11].

Study of the nucleophilic substitution of the dichloro derivative (II) showed that the highest yield of the required reaction products was obtained under conditions where the employed hydrogen chloride acceptor had basicity 1-6 units higher than the amine used in the reaction, i.e., in the case of triethylamine the pK_aBH^+ value of the amines being alkylated must lie in the range of 4.5-9.5 (in water) (method A). The range for the use of N,N-diethylaniline was 0.5-5.5 (method B). The observance of these limiting conditions is essential to reduce the side hydrolysis of the dichloro derivative (II), leading to the dihydroxy derivative (I). The problem of the introduction of such low-basicity amines as 2-nitroaniline ($pK_aBH^+ = -0.2$ in water) [12] or 2-bromo-4-nitroaniline ($pK_aBH^+ = -1.0$ in water) [12] into reaction with the dichloro derivative (II) was solved by omission of the hydrogen chloride acceptor — the reaction mixture was simply fused (method C). Here, hydrogen chloride was released. The use of an excess of the highly basic amines ($pK_aBH^+ > 4$) in the reaction makes it possible to circumvent the hydrogen chloride acceptor, and in this case two equivalents of the amine are used to one chlorine atom (method D). In some cases, the compounds being alkylated were introduced in the form of sodium salts (method E).

By the successive introduction of the compounds being alkylated into the reaction it is possible to synthesize unsymmetrical derivatives. The presence of bulky substituents at the heteroatom and the reduced basicity of the nucleophile increase the yield of the monosubstitution products.

Data from investigation of the biological activity of the synthesized compounds indicate high psychotropic and herbicidal activity in the alkylamino and anilino derivatives respectively.

EXPERIMENTAL

The PMR spectra were recorded on a Bruker WH 90/DS spectrometer (90 MHz) with TMS as internal standard. The mass spectra were obtained on a VS-50AET spectrometer at 70 eV. The purity of the products was monitored by TLC on Silufol UV-254 plates and also by HPLC on a Du Pont 850 chromatograph with a Zorbax SIL column (4.6×250 mm). Elemental analysis for C, H, N, and S was performed on a Carlo Erba instrument.

The elemental analyses agreed with the calculated data. The characteristics of the synthesized compounds (II-XLIX) are given in Table 1, and those of the arylamino derivatives (L-CXIV) are given in Table 2.

5,6-Dichlorofurazano[**3,4-b**]**pyrazine (II).** In a 4-liter flask we placed 500 ml of phosphorus oxychloride, 1040 g (4.75 moles) of phosphorus pentachloride, and 350 g (2.27 moles) of 5,6-dihydroxyfurazano[3,4-b]pyrazine (I) [2], and we distilled off 600 ml of phosphorus oxychloride by heating. The heat was replaced by an ice bath, and 2 liters of cold water was added with cooling to 5-10°C. The precipitate was filtered off and washed with cold water (3 × 150 ml). The moist product was crystallized from a mixture of 650 ml of acetone and 1400 ml of water. After washing with water and drying over alkali, we obtained colorless crystals of (II). Mass spectrum (m/z): 190 (M⁺), 160 (M–NO), 108 (M–C₂NCl₂). Found %: C 25.17; N 29.03; Cl 37.72. C₄Cl₂N₄O. Calculated %: C 25.26; N 29.47; Cl 37.37.

Method A. 5,6-Di(N-allylamino)furazano[3,4-b]pyrazine (XV). We added 4.3 ml (0.057 mole) of allylamine to a stirred and cooled suspension of 5.13 g (0.027 mole) of 5,6-dichlorofurazano[3,4-b]pyrazine (II) in 30 ml of acetonitrile. While stirring and cooling, we added 7.93 ml (0.057 mole) of triethylamine. After 30 min the triethylamine hydrochloride was filtered off, the mother solution was evaporated, the remaining oil was dissolved in 50 ml of chloroform, and the solution was washed with water. After drying with sodium sulfate, the product (XV) was crystallized in the refrigerator. Found %: C 51.60; H 5.07; N 36.02. $C_{10}H_{12}N_6O$. Calculated %: C 51.72; H 5.21; N 36.18.

Method B. 5,6-Di(3-nitroanilino)furazano[3,4-b]pyrazine (LXXXII). We added 12.76 ml (0.08 mole) of N,Ndiethylaniline to a mixture of 7.64 g (0.04 mole) of the dichloro derivative (II) and 10.05 g (0.08 mole) of 3-nitroaniline in 40 ml of acetonitrile. The mixture was heated to boiling and slowly cooled. The crystals were filtered off and washed with acetonitrile and water. The crude product was crystallized from a mixture of 100 ml of acetone and 30 ml of water. Found %: C 48.43; H 2.54; N 28.07. C₁₆H₁₀N₈O₅. Calculated %: C 48.74; H 2.56; N 28.42.

Method C. 5,6-Di(2-nitroanilino)furazano[3,4-b]pyrazine (LXXXI). We heated 7.64 g (0.04 mole) of the dichloro derivative (II) and 10.05 g (0.08 mole) of 2-nitroaniline at 130°C for 10 min in an open beaker with stirring. The mass was then crystallized from 120 ml of acetone. Found %: C 48.93; H 2.71; N 28.04. $C_{16}H_{10}N_8O_5$. Calculated %: C 48.74; H 2.56; N 28.42.

Method D. 5,6-Diaminofurazano[3,4-b]pyrazine (V). We added, with stirring, 7.64 g (0.04 mole) of the dichloro derivative (II) to a mixture of 20 ml of 25% aqueous ammonia solution and 5 ml of acetonitrile, cooled to 5-10°C. After 2 h the precipitate was filtered off, washed with water (2×15 ml), and dried. The diamine can be recrystallized from acetic acid or dimethylformamide. Mass spectrum (m/z): 152 (M⁺), 122 (M–NO), 95 (M–NO–CHN), 68 (M–NO–CHN–CHN). Found %: C 31.50; H 2.47; N 54.97. C₄H₄N₆O. Calculated %: C 31.58; H 2.65; N 55.24.

Method E. 5,6-Diethoxyfurazano[3,4-b]pyrazine (XXXIII). While stirring, we added 0.95 g (0.005 mole) of the dichloro derivative (II) to a solution of 0.62 g (0.011 mole) of potassium hydroxide in 7 ml of ethanol, cooled to 5-10°C. After 2 h the precipitate was filtered off, washed with water (2 × 10 ml), and dried. The product was dissolved in 15 ml of hot acetone, the insoluble salts were filtered off, and 20 ml of water was added to the solution. After cooling, the crystals of (XXXIII) were filtered off. Mass spectrum (m/z): 210 (M⁺), 195 (M-CH₃), 182 (M-C₂H₄), 167 (M-C₂H₄-CH₃), 166 (M-C₂H₅-CH₃), 154 (M-C₂H₄-NO). Found %: C 45.67; H 4.76; N 26.76. C₈H₁₀N₄O₃. Calculated %: C 45.71; H 4.76; N 26.65.

REFERENCES

- 1. V. G. Andrianov, I. B. Starchenkov, and A. F. Mishnev, Khim. Geterotsikl. Khim., No. 8, 1120 (1997).
- 2. A. Gasco, G. Rua, E. Menziani, G. M. Nano, and G. Tappi, J. Heterocycl. Chem., 6, 769 (1969).
- 3. A. V. Eremeev, B. G. Andrianov, and I. P. Piskunova, Khim. Geterotsikl. Khim., No. 5, 613 (1978).
- 4. A. V. Eremeev, B. G. Andrianov, and I. P. Piskunova, Khim. Geterotsikl. Khim., No. 9, 1196 (1978).
- 5. N. Sato and J. Adachi, J. Org. Chem., 43, 341 (1978).
- 6. M. T. Clark and J. J. Gilmore, British Patent No. 2,122,492A; Chem. Abs., 100, 204992 (1984).
- 7. L. Willer and D. W. Moore, J. Org. Chem., 50, 5123 (1985).
- 8. J. W. Fischer, R. A. Nissan, and C. K. Lowe-Ma, J. Heterocycl. Chem., 28, 1677 (1991).
- 9. I. B. Starchenkov, Thesis for Candidate of Chemical Sciences [in Russian], IOS Akad. Nauk Latv. SSR (1989).
- 10. W. H. Chesemen and S. G. Werstink, Adv. Heterocycl. Chem., 14, 162 (1972).
- 11. Y. C. Tong, J. Heterocycl. Chem., 12, 451 (1975).
- 12. Tables of Rate and Equilibrium Constants of Heterolytic Organic Reactions, Vol. II (1), General Aspects of Organic Chemistry [in Russian], Moscow (1976).